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1. ABSTRACT 
 
We describe extensions of the tensor-mass algorithm allowing fast computation of non-
linear and visco-elastic mechanical forces and deformations for the simulation of 
biological soft tissue. This work is part of a broader project aiming at the development 
of a simulation tool for the planning of cryogenic surgical treatment of liver cancer. 
Real-time deformation algorithms are usually based on linear elasticity, but the 
simulation of percutaneous surgery requires more accurate modelling of soft tissue. Two 
types of non-linear extensions of the tensor-mass model are discussed here: a physically 
non-linear model, involving non-linear stress-strain relationships, and a geometrically 
non-linear or large displacement model. Both simulation models are compared to 
experimental data obtained under perforation of a deer liver sample by a biopsy needle. 
 
 
2. INTRODUCTION 
 
The first algorithms for fast computation of mechanical forces and deformations made 
use of the linear elastic mechanical model [1, 2, 3]. Bro-Nielsen and Cotin showed that 
Finite Element Methods could be used for real-time applications, first with a quasi-static 
formulation [4], and later with a dynamical formulation called the tensor-mass model 
[5]. However, experimental characterizations revealed that linear elasticity is only a 
coarse approximation of the real properties of biological soft tissues. For example a 
thorough study of the mechanical properties of swine brain tissue conducted by Miller 
and Chinzei [6] showed that brain tissue was highly non-linear, and that a visco-elastic 
constitutive model was most suitable for modelling brain tissue deformations. Similar 
conclusions were reached by Farshad et al. [7] from experiments on the swine kidney. 
 
For this reason, we aimed at designing an algorithm allowing real-time computation of 
non-linear visco-elastic behaviours. Zhuang and Canny [8] developed a fast finite 
element based method that integrates geometrical non-linearity. In a similar approach 
Wu et al. [9] additionally integrated physical non-linearity for hyper-elastic materials. 
Picinbono et al. [10] developed an extension of the tensor-mass algorithm integrating 
geometrical non-linearity. An important quality of the tensor-mass model is to allow 
real-time topology changes in the finite element mesh, which is a requirement for the 
simulation of most if not all surgical applications. 
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3. THE LINEAR ELASTIC TENSOR-MASS MODEL 
 
In the tensor-mass algorithm, the modelled object is discretized into a conformal 
tetrahedral mesh as defined by finite element theory. Inside every tetrahedron Tl, the 
displacement field is defined by linear interpolation of the displacement vectors of the 
four vertices of Tl. The linear elastic energy of tetrahedron Tl can then be expressed as a 
function of the displacements of the four vertices and of the two Lamé coefficients of 
the material, 

λ
 and � . The force vector )( jTl

f  applied to vertex j of tetrahedron Tl is 

defined as the derivate of the elastic energy and expressed by 
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where )(kTl
u  is the displacement of vertex k of tetrahedron Tl with regard to its rest 

position, and lT
jkK  are stiffness tensors of size 3 × 3 that depend only on the rest 

geometry of Tl and on the Lamé coefficients. The detailed expression of tensors lT
jkK  

has been provided by Cotin et al. [5]. These tensors can be pre-computed, therefore 
real-time computation is restricted to a combination of matrix-vector multiplications and 
matrix summations. 
 
Given a complete mesh, the total elastic force fi applied onto every vertex i is obtained 
by summing the forces contributed by all adjacent tetrahedrons of i. The resulting 
system is solved dynamically, the motion of every vertex is determined by a Newtonian 
equation which takes the form 
 0=−+ iiiiim fuu &&& γ  (2) 

where mi and γ i are respectively the mass and the damping coefficient associated to 
vertex i. Mass and damping effects are supposed to be lumped at vertices. 
 
 
4. MODEL EXTENSIONS 
 
In the classical definition of linear elasticity, linearity is assumed at two different levels. 
First, quadratic terms are eliminated from the strain tensor, implying that small 
deformations are assumed, this hypothesis may be called geometrical linearity. Second, 
the relation between the stress and strain tensors is assumed to be linear, this hypothesis 
may be called physical linearity. 
 
4.1 Adding physical non-linearity 
 
In expression (1), the force field inside a tetrahedron is expressed as a linear 
combination of the displacements of the four tetrahedron vertices. Physical non-linearity 
can be simulated by dynamically and locally modifying the stiffness tensors, depending 
on the local deformation conditions, thus avoiding restriction to a particular class of 
mechanical models. Stiffness tensors cannot be modified arbitrarily as the isotropy 
properties of the material must be satisfied. When all possible space symmetries have 
been considered, only two degrees of freedom remain for an isotropic material, 
corresponding to the two Lamé coefficients. Therefore acting on the Lamé coefficients 
themselves is an easy way to modify the local elastic properties of the material in real-
time, while satisfying isotropy constraints and covering the complete space of possible 
isotropic behaviours. 



Stiffness tensors lT
jkK  can be divided into two components proportional to 
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where tensors lT
jkA  and lT

jkB  share the same properties as lT
jkK  and can still be pre-

computed. Then a non-linear expression can be computed under the form 
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where δ λ
(Tl) and δ � (Tl) are non-linear corrective functions. δ λ

 and δ �  depend on the 
local deformation of the mesh element Tl. The choice for their expression as a function 
of the shape of a tetrahedron determines the type of non-linear law being simulated. 
 
A quantification of the local mesh element deformation has to be used as an argument 
for δ λ

 and δ � . Different measures may be considered, including strain tensor invariants 
or tetrahedron shape measures. Because of the empirical nature of the method, the 
choice of a particular measure does not significantly affect the overall behaviour of the 
system. In this study, the tetrahedron mean ratio as defined by Liu and Joe [11] was 
used, mainly for computational speed concerns. Examples of possible behaviours that 
can be simulated using this technique have been described previously [12]. 
 
4.2 Adding geometrical non-linearity 
 
Picinbono et al. [10] introduced an extension of the tensor-mass algorithm that uses a 
non-linear Cauchy-Green strain tensor, while keeping physical linearity. The properties 
and overall structure of the algorithm remain unchanged, but the extension results in a 
number of additional terms in the expression of force fi 
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where lT
jkK  are the stiffness tensors described in Section 3, lT

jkmc  are vectors and lT
jkmnd  

are scalars. All these parameters can be pre-computed as with the stiffness tensors. 
 
A comparison between the linear model and the geometrically non-linear model in a 
simulation of compression of a three-dimensional model mesh is shown in Figure 1. As 
could be expected, the two models lie very close when deformations remain small, but 
differences arise and become overwhelming when deformations get larger. 
 

 
Figure 1. Forces in the simulated compression of a three-dimensional mesh computed 

by a linear elastic (blue) and a geometrically non-linear (red) tensor-mass model. 



The geometrically and physically non-linear models can easily be combined. Figure 2 
compares the deformations observed in the compression of a three-dimensional model 
mesh for a physically non-linear model only (a) and for the combination of both models 
(b). Sensible differences can be noticed between the two deformed states, in particular 
for the mesh elements surrounding the compression hole. The linear model is known to 
produce shape distortions in cases where a part of an object undergoes a rotation [10], 
which is typically the case for these elements. The Cauchy-Green based model 
conserves surface shapes more truthfully and produces a more realistic behaviour. 
 

 
Figure 2. Deformation state of two models after compression has been applied onto one 
face of the top during 1.5 s with a velocity of 10 mm/s. a) Physically non-linear model 

only. b) Combination of physically and geometrically non-linear models. 
 
4.3 Adding visco-elasticity 
 
Visco-elasticity can be introduced into the tensor-mass model provided that viscous 
modelling be restricted to a simple linear relation. We introduced a viscous force that is 
proportional to the speed of deformation and to a viscosity coefficient η . The obtained 
expression for the force is 
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where 
(v)

lT
jkK  are 3 × 3 tensors depending only on the rest geometry of tetrahedron Tl 

and on the viscosity coefficient η , that still can be pre-computed. 
 
The resulting visco-elastic model is a Voigt-Kelvin one, which does only provide 
approximate modelling of the properties of soft tissue. But when high computational 
speed is a top priority, this model is the very simplest that can be introduced into the 
tensor-mass framework. Integration of more advanced visco-elastic models appears to 
be more challenging and computationally expensive. 
 
 
5. EXPERIMENTAL VALIDATION 
 
Experimental measurements were conducted to assess the suitability of these models to 
the simulation of biological soft tissue. A 2.4 mm diameter biopsy needle was mounted 
on a 5 lbs Totalcomp TMB-5 load cell. The needle could be moved vertically by a step-
motor whose velocity ranged from 2 to 10 mm/s. It was used to perforate a sample of 
deer liver placed in a container. The force modulus exerted onto the needle was 



acquired together with its position at a rate of 500 Hz by an A/D sampling board. 
 
Results showed to be highly reproducible. For a given velocity, all force curves were 
very similar, independently of the position where the sample was reached or of the 
orientation of the sample. The point where membrane rupture occurred was variable, but 
this variability could not be linked to the behaviour before rupture. 
 
Both models, whether geometrical non-linearity was included or not, were successfully 
able to reproduce experimental data for the different velocities that were tested 
(Figure 3). Numerical values to be used for the δ λ

 and δ �  functions are lower for the 
geometrically non-linear model, since it produces a sharper growth in force by itself. 
 

 
Figure 3: Experimentally measured forces in the perforation of liver tissue by a biopsy 

needle compared to simulations. a) Five experimental curves measured for a needle 
speed of 2 mm/s, and simulated force by the physically non-linear model. b) Three 
experimental curves measured for different needle speeds, and the corresponding 

simulated forces by the physically and geometrically non-linear model. 
 
 
6. COMPUTATIONAL SPEED 
 
Computational time required by these algorithms increases linearly with the number of 
mesh elements. The physically non-linear model needs 7-fold more time than the linear 
elastic model, and addition of geometrical non-linearity increases time by another factor 
7. On a 1 GHz Pentium III processor, an iteration rate of 50 Hz could be achieved with 
meshes of up to 17000 tetrahedrons for the linear elastic model, 2500 tetrahedrons for 
the physically non-linear algorithm, and 350 tetrahedrons for the full algorithm. 
 
Efficiency of the non-linear algorithms can be improved by making use of a non-
linearity threshold. In typical applications, high deformations are limited to small areas 
of the mesh while most mesh elements are only slightly deformed. The linear model is 
sufficient for small deformations, so by leaving aside the non-linear terms for elements 
whose deformation is smaller than a given threshold value, the computational load can 
be focused onto the limited number of mesh elements that bring the key contribution. 
 
 
7. DISCUSSION AND CONCLUSION 
 
The main drawback of the full non-linear tensor-mass model lies in its low 
computational speed. In the present state, performance is not good enough to allow its 



use in real-time on realistic models of biological organs. Yet, the physically non-linear 
model alone is fast enough for real-time applications, and its modelling accuracy cannot 
be distinguished from the full model in our experiments. For this reason it provides an 
interesting solution for simulation of biological soft tissue. 
 
Additional experimental characterizations would definitely be useful to fully validate 
this model and to assess to degree of approximation involved by geometrical 
linearization. Measurements of three-dimensional deformations of biological samples 
would allow to distinguish the accuracy of both models, and remains a goal for the 
future. In addition, in vivo mechanical data of liver tissue will be necessary to build an 
accurate mechanical model of liver suitable for surgery simulation, as differences 
between the properties of living and dead biological tissue are significant. 
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